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Trading Volume and Information Revelation in
Stock Markets

Matti Suominen�

Abstract

I consider a market microstructure model in which the rates of public and private informa-
tion arrival are probabilistic. The latter depends on the availability of private information
that is stochastically changing over time. In equilibrium, traders estimate the availability of
private information using past periods’ trading volume and use this information to adjust
their strategies. The time-series properties include contemporaneous correlation between
price variability and volume and autocorrelation in price variability (similar to GARCH).
The model explains why trading volume contains useful information for predicting volatil-
ity and provides predictions on the limit and market order placement strategies of traders.

I. Introduction

The academic literature in finance contains few theoretical papers on the in-
formational role of trading volume, despite the common use of such information
by practitioners and several stylized facts relating trading volume and asset prices.
For example, Karpoff (1987) documented that stock return volatility and contem-
poraneous trading volume are positively correlated, and Lamoureux and Lastrapes
(1990) find that trading volume in stock markets contains relevant information for
predicting future volatility. In this paper, I develop a theoretical model of stock
markets that is consistent with these and several other stylized facts on the stock
return trading volume relation, and in which trading volume plays an important
role in traders’ learning. The model generates several interesting results concern-
ing the behavior of trading volume and stock price variability.

In asset markets, the very source of uncertainty in the asset returns is con-
stantly changing. In the case of equity returns, it may be that at a given point
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in time, the uncertainty over returns stems from uncertainty over the price of the
firm’s output. At other times, uncertainty over the launching of a new product, the
profitability of a recent acquisition, or even the outcome of a takeover battle may
be the prime sources of fluctuations in equity returns. If some of these sources of
uncertainty are easier for traders to monitor than others, then it is reasonable to
assume that there are changes in the availability of private information.

In my model, new private information about equity returns is available in
any given period only with some probability. In addition, this probability changes
stochastically over time as the source of uncertainty in equity returns changes.
The public information arrival is also probabilistic, but, for simplicity, its arrival
rate is constant. There are two types of traders: informed speculators and liquidity
traders. Both types of traders act competitively. The market is organized as a limit
order market.

In equilibrium, the informed speculators compete in trading with liquidity
traders, and trade aggressively as soon as they receive new private information.
Their trading soon reveals their private information to other market participants
and leads the other traders to revise their estimates for both the value of the asset
and the availability of private information. The latter affects traders’ behavior: As
the probability of the existence of private information increases, liquidity traders
become wary and start posting more conservative limit orders. Initially, a higher
probability of private information attracts more speculators to search for infor-
mation, so the number of informed traders increases. However, since this influx
makes liquidity traders more cautious, the number of informed traders may later
decrease.

In my model, traders estimate the availability of private information using
past periods’ trading volume and use this information to adjust their strategies.
This accords with the observation that the information contained in trading vol-
ume is important for traders’ learning and affects their behavior. In this respect,
the paper is closely related to Blume et al. (1994) and Bernardo and Judd (1999).
These papers develop models in which traders use previous periods’ trading vol-
ume to make inferences about the quality of informed traders’ signals, which is
important for estimating the payoff to the security. In many other models on the
role of trading volume, such as Campbell et al. (1993) and Wang (1994), trad-
ing volume can help an econometrician learn about the expected returns on the
risky asset. Yet, in contrast to the findings in this paper and Blume et al. (1994)
and Bernardo and Judd (1999), the traders themselves do not learn anything from
trading volume.

My model generates several results related to the stock price variability trad-
ing volume relation. First, consistent with empirical research, e.g., in Karpoff
(1987) and Gallant et al. (1992), there is positive correlation between price vari-
ability and volume and autocorrelation in price variability. Positive correlation
between price variability and trading volume arises because trading by informed
traders reveals private information to markets and affects prices. The expected
price variability depends on the availability of private information, and inherits
any autocorrelation in the process that determines it. If, as I assume, the avail-
ability of private information changes according to a two-state Markov process,
the autocorrelation function for price variability is positive and geometrically de-
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caying. This is similar to the autocorrelation functions of price variability for
individual stocks and stock indices documented in the empirical research (see,
e.g., Brock et al. (1996)). Due to changes in traders’ behavior as they learn about
the state of the economy, trading volume can be either positively or negatively
autocorrelated.

My model predicts that the expected price variability, conditional on the pub-
lic information set, is autocorrelated and mean reverting. In fact, I derive a closed-
form solution to conditional variance of price changes that looks very similar to a
GARCH (Generalized Autoregressive Conditionally Heteroskedastic) model. In-
terestingly, and in contrast to most GARCH models, the evolution of conditional
variance in my model depends on trading volume. Another result is that the ex-
pected trading volume can be either positively or negatively correlated with the
expected price variability. Finally, my model provides predictions on the limit
and market order placement strategies of traders.

A few other theoretical papers address the above empirical regularities. Fos-
ter and Viswanathan (1995) build a speculative trading model, with changing ex-
pected volatility of the underlying asset returns, which can account for the positive
correlation between volume and volatility. Harris and Raviv (1993) build a model
based on differences in opinion that can account for the positive volume-absolute
price change correlation and positive autocorrelation in volume. One drawback of
the Harris and Raviv (1993) model is, however, that it concerns solely the arrival
of public information, whereas, in reality, it is often difficult to relate the changes
in volatility and volume to the arrival of any public information (see, e.g., Cut-
ler et al. (1989)). Other theoretical articles that have addressed the issue include
Brock and LeBaron (1996), de Fontnouvelle (1996), and Shalen (1993). Another,
more empirically oriented approach to explaining these phenomena is the Mixture
of Distribution Hypothesis pioneered by Clark (1973), and recently extended by
Andersen (1996). In these models, the dynamic features are governed by infor-
mation flow, modeled as a stochastic volatility process. In many ways, this paper
is a theoretical extension of their work.1

The paper is organized as follows. Section II describes the model. Section
III characterizes an equilibrium where the informed traders trade aggressively
whenever they receive private information. In Section IV, I study the time-series
properties of this equilibrium. Section V concludes.

II. Basic Model

There areT periods, which can be thought of as days, a safe asset, and a
single risky asset. The return on the safe asset is normalized to zero. The risky
asset is the equity of a firm. The firm engages in two different activities over time,
A andB, but only one activity at a time. The state of the economy is the firm’s
activity st � �A�B�� which changes randomly over time as follows:A becomes
B with probability� andB becomesA with probability�� The initial state isA
with probability���� +��� Both activities yield an identically distributed random

1Other closely related articles include Bollerslev, Chou, and Kroner (1992), DeGennaro and
Shrieves (1997), Dutta and Madhavan (1998), Grundy and McNichols (1989), Jones et al. (1994),
Kandel and Pearson (1995), Kim and Verrecchia (2000), and Seppi (1992).
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returnÆt � ��1� 1� per period, where the probability thatÆ t� 1 is 1/2� The only
difference between the two activities is in the traders’ ability to monitor them.

Both� and� are assumed to be less than one-half. Assuming that both� and
� are equal to one-half would mean that the firm’s activity is randomly determined
each day. The assumption that� and� are both less than one-half thus requires
some persistence in the firm’s activity. This assumption is consistent with my
interpretation of the changes in the source of uncertainty: takeover battles, price
wars in output markets, or the launching of a new product are all examples of
sources of uncertainty that tend to last for several days at a time.

The payoff to the risky asset in periodT, FT � is the sum of a fixed value
F � 0� and the periodic returns,

FT � F +
T�

t�1

Æt�

Both public and private signals may revealÆ t to the traders at timet� First, there is
a public announcement at the end of periodt with probability�, a t� that revealsÆt�
With probability�1���� there is no public announcement. For the trading volume
to contain information on future volatility beyond price changes, it is necessary
that 0� � � 1�

There are two types of agents in this economy: speculators and liquidity
traders. Both types of agents are risk neutral and, for simplicity, there is no dis-
counting. First, there is a large number of speculators, a continuum, who can, in
the beginning of each periodt� observe a common signalz t on periodt return,
Æt� by exerting efforte � 0. I assume thate is small enough so that, in equilib-
rium, some speculators always choose to become informed. I denote the measure
of informed speculators bynt. I also refer to these traders as “informed traders.”

I assume thatzt � �Æt� 0� and that the probability thatzt perfectly reveals
Æt� ���zt � Æt�� depends on the availability of private information. This, in turn,
depends on the activity chosen by the firm. ActivityA is relatively easy to monitor,
whereas activityB is more difficult: i) when the firm is engaged in activityA� the
availability of private information is high, and���z t � Æt�� 	 � 1; and ii) when
the firm is engaged in activityB� the availability of private information is low, and
���zt�Æt�� 	� where 0�	 � 	. For simplicity, I assume that the firm’s activity
is not directly observable to any trader.

In addition to speculators, there is in each periodt a measurem of liquidity
traders, indexed in the interval�0�m�� on both sides of the market, i.e., with either
a need to sell or buy the asset. I take the trading motives of these liquidity traders
as exogenously given and simply assume that each such traderi has utilityc i from
buying or selling one unit of the risky asset in that period. I assume thatc i is
independent across traders, and uniformly distributed between zero and one.2�3

2It is common in the market microstructure literature to assume the existence of some liquidity
traders with exogenous, non-speculative trading motives. The reason is that in the absence of any non-
speculative trading motives there is, in equilibrium, no trading at all (see e.g., Milgrom and Stokey
(1982)). I have chosen not to model the trading needs of the liquidity traders explicitly. To minimize
their impact on the volume and volatility dynamics, I assume, however, that the trading needs of the
liquidity traders are constant over time.

3I therefore assume that liquidity traders have no discretion in timing their trades, i.e., that they
receive no utility from trading in, for instance, periodt +1. Introducing limited discretion in timing for
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Since I am also interested in the limit order placement strategies of traders, I
assume that the equity markets are organized as a limit order market. The markets
operate in the following manner: in each period, the opening price is set by the
exchange at the expected value of the asset, conditional on all public information.
After this, different traders can submit limit orders to the market. A computer,
acting as a marketplace, first executes all limit orders that can be executed at the
opening price. After this, in case of excess demand (supply) at the opening price,
the computer increases (decreases) the market price to the level of the lowest
unexecuted asks (highest unexecuted bids), and executes all limit orders that can
be executed at that new price. The process continues until no limit orders cross.
The price that prevails after this process becomes the closing price of the trading
period. When there is excess demand at any given price, e.g.,y buy orders and
k sell orders, wherey � k� I assume that each buyer receives stockat that price
with an equal probabilityk�y� The order size is exogenously set as one unit per
trader.

Note that the assumed market clearing is different from that of a typical call
market where all trading takes place at a single price. I try to imitate the out-
come of a continuous electronic limit order market, where traders submit orders
through intermediaries, and there is uncertainty over the exact time their orders
reach the market. Since I collapse a continuous trading day into a single period, I
do not assume a single market clearing price nor do I impose price priority, but as-
sume that, at any given price, all crossing orders are equally likely to be executed.
Figure 1 clarifies the operation of these markets.4

In each periodt � T � 1, the timing of events is as follows.

i) The state of the economyst � �A�B� is realized. Speculators choose whether
to paye and obtain access to the informative signalz t.

ii) The periodic innovationÆ t � ��1� 1� is realized. The informed traders observe
a signalzt � �Æt� 0�.
iii) The exchange announces an opening price equal to the expected value of the
asset, conditional on all public information.

iv) Traders submit limit orders (either one bid, one ask, or both) to the market,
and the market clears according to the rules outlined above. All traders observe
the entire sequence of prices and associated volumes of trade.

v) A public signalat � Æt is released with probability� � 0.

In periodT� the timing of events is similar except that, after trading, there is a
public signal (a quarterly report) that reveals allÆ� for 
 � T. After this, the firm
paysFT � F +

�T
t�1 Æt as a dividend to all shareholders.

Before proceeding, I introduce some additional notation: denote byP o
t and

Pcl
t the opening and closing prices of periodt � 0� Whenever I writeP t� i.e.,

without any superscript, I am referring to the opening price. Denote by� t the

liquidity traders across days could lead to clustering of trading on some days, as described in Foster
and Viswanathan (1990).

4For the informed traders to be able to make positive profits, it is crucial that the traders cannot
condition on the contemporaneous order flow. However, in my setting, it would make little difference
if traders were allowed to condition on contemporaneous trading volume. The issue of allowing traders
to condition on contemporaneous trading volume is further discussed in Blume et al. (1994).
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FIGURE 1

The Trading Mechanism
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The width of the bars reflects the amount of limit orders at any given price. In Figure 1, this is initially
constant for the range of bids and asks that are submitted to the market.

In Figure 1.A, the shaded areas show the quantities of crossing orders. These orders are matched, and
trading takes place at the opening price Po. When there is excess demand at price Po, for instance y
buy orders and k sell orders where y � k, we assume that each buyer receives stock at price Po with an
equal probability k�y. In Figure 1.B, the bars now show the distributions of bids and asks after matching
the crossing orders at price Po. As there is excess demand at price Po, the price rises to Po + d. The
shaded areas now show the crossing orders at price Po +d. These orders are now matched, and trading
takes place at price Po + d. In Figure 1.C, this process continues until there are no crossing orders. The
price that prevails at the end of this process, Pcl , becomes the closing price of the period.

public information set at the beginning of periodt� The public information set� t

contains the price and volume for all transactions executed in the previous periods
as well as all public announcements. In particular,� t contains all the aggregate
daily volumes of trade up to periodt � 1, ����t�1

��1 � Denote byRt the traders’
estimate of the probability of stateA in periodt� given� t, i.e.,Rt � E �st � A � �t�.
Similarly, denote by	t the probability that the informed traders receive a signal
zt�Æt in periodt, given�t� i.e., let	t�	+Rt �	� 	�. Finally, letFt � E �FT � �t�

and�Æt � E �Æt � �t+1� �
To determine uniquely the trading volume by preventing equilibria where

informed traders trade among themselves at the expected value of the asset, I
assume, in addition, that each trader must pay a positive transaction costh, where
h is arbitrarily close to zero each time a transaction is completed. For the sake
of exposition, because the transaction costh is arbitrarily small, I will ignore this
parameter except in the proofs of the propositions.

The objective of all traders is to maximize their utility, which is linear in
their periodT wealth and their utility from satisfying their liquidity needs. The
information set of a speculatori� in the beginning of periodt, 
 i

t � contains�t as
well as all past signals observed by traderi, �zi

��t�1
��1� wherezi

� � z� if trader i
was informed in period
 and zi

� � 	 otherwise. That is,
 i
t � ��t� �zi

��t�1
��1�.

The existence of this past private information makes the model potentially very
complicated. In this paper, however, I focus only on equilibria wherez t is per-
fectly revealed at the end of the periodt and, therefore in equilibrium, the pay-
off relevant information contained in
 i

t is also contained in�t. Denote by
qask

t �P� a� andqbid
t �P� b� the unconditional probabilities that an aska or a bidb�
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respectively, is executed at a priceP in period t. Under the assumption thatz t

is perfectly revealed in equilibrium, the maximization problem for an informed
traderi in periodt� after observing a private signalz t� can now be written as,

�	

b�a

E
�
�FT � P�qbid

t �P� b� + �P � FT �qask
t �P� a� � �t� zt

�
�(1)

A risk-neutral liquidity trader, on the other hand, maximizes the sum of his
periodt trading profit and his utility from trading. Therefore, the maximization
problem for a liquidity traderi with a utility ci from selling the asset is

�	

b�a

E
�
�FT � P�qbid

t �P� b� + �P � FT + ci�qask
t �P� a� � �t

�
�(2a)

and the maximization problem for a liquidity traderj with a utility c j from buying
the asset is

�	

b�a

E
�
�FT � P + cj�qbid

t �P� b� + �P � FT � qask
t �P� a� � �t

�
�(2b)

An equilibrium exists when informed speculators maximize (1), the liquidity
traders maximize (2), uninformed speculators choose not to trade,z t is perfectly
revealed though traders’ actions, and the number of informed traders is such that

E

�
�	


b�a
E
�
�FT � P�qbid

t �P� b� + �P� FT � qask
t �P� a� � �t� zt

� � �t

�
� e�(3)

Equation (3) requires that the expected profits to informed traders be equal to their
cost of information acquisition,e.5

Since the setup is symmetric in terms of magnitudes and probabilities of
price increases and decreases, I will focus attention on symmetric Nash equilibria.
I now proceed to the analysis of the equilibrium of the trading game for the risky
asset.

III. Equilibrium

Proposition 1. The following is a Nash equilibrium of the trading game: In period
t, a measuren�t of speculators obtain access to a private signalzt. After the ex-
change sets an opening pricePo

t � Ft, these informed traders submit a bid and an
ask with a limit price equal toFt +zt. A fractionc�t of liquidity traders with selling
(buying) needs, where 1� c�t � 0, trade conservatively, and set their asks atFt +1
(bids atFt � 1). The remaining fraction�1� c�� of liquidity traders with selling
(buying) needs trade aggressively, and set their asks atF t � 1 (bids atFt + 1). The
closing price of periodt is alwaysFt + zt. The fraction of conservatively trading
liquidity traders,c�t , is uniformly increasing in	 t. Whene is small enough, the
number of informed traders,n�t � is initially increasing, but later decreasing in	 t.

The proof is given in the Appendix.6 The intuition for why traders submit
bids and asks with only two limit prices is as follows. Given such behavior by

5The maximization problem for uninformed speculators is similar to equation (2) withci � 0.
6Although I have not been able to show it formally, I suspect that this equilibrium is the unique

symmetric equilibrium, and it may well be the unique equilibrium overall, apart from the ones where
all liquidity traders post conservative limit orders or submit no orders at all.
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the informed traders and other liquidity traders, a liquidity trader with a need to
sell may do one of two things: first, he may set the limit price of his sell order
conservatively, atFt + 1� and sell only when the informed traders observez t � 1.
Second, he may set his limit price aggressively, lower or equal toFt� in order to
have the possibility of trading with liquidity traders who have opposite liquidity
needs in the event thatzt � 0. In a symmetric equilibrium such as this, the
measure of liquidity traders with selling needs, who set their asks belowFt� is
the same as that of liquidity traders with buying needs, who set their bids above
Ft. Given this, the first of these should set their ask prices atFt � 1 because the
only instant in which they may fail to trade, in equilibrium, at priceFt is when
there are informed traders who have observedz t � �1. In this case, the value
of the asset isFt � 1 and the liquidity traders with selling needs are better off
trying to sell to those traders who have set their bids atFt �1. The logic is similar
for liquidity traders with buying needs. In equilibrium, those liquidity traders
with small gains from trading submit conservative orders, whereas those liquidity
traders with large gains from trading submit aggressive ones.

Because each informed trader is small, he is best off by trading on his private
information, that is, by trying to buy whenz t � 0 and sell whenzt � 0. Given
the behavior of the other traders, sending a bid and an ask with a limit priceFt + zt

maximizes his expected profits. Note that given these strategies, the closing price
of period t�Pcl

t � is always equal toFt + zt. Thus, the private information of the
informed traders,zt� is always perfectly revealed at the end of the period. In
this model, competition among informed traders leads them to trade aggressively
whenever they have (non-zero) private information and this reveals their private
information to the market. Even though the informed traders’ private information
is perfectly revealed to the markets through this process, the expected profits to
informed traders are positive. The profits occur since with some probability, an
informed trader’s order is executed at the opening price,Ft� at which initial trading
takes place and this price does not reflect the periodt private information,zt. Note
also that becausezt is always perfectly revealed, the next period’s opening price,
Ft +1� is equal toPcl

t � Ft + zt when there is no public announcement and toFt + at

otherwise.
It is intuitive that the proportion of liquidity traders who choose to trade

conservatively,c�t � is increasing in the probability of the existence of private in-
formation in periodt� 	t� The higher	t is� the more severe the adverse selection
problem faced by liquidity traders. For instance, if a liquidity trader sets an ask
below the opening priceFt� it is always executed atFt whenÆt is positive, but
it is executed at that price only with some probability, which is decreasing in	 t

whenÆt is negative. Similarly, as the probability of the existence of private in-
formation,	t� increases, initially more speculators choose to search for private
information. This, however, further worsens the adverse selection problem of the
liquidity traders, and thus increasesc�t � At some point in time, the adverse selec-
tion problem of the liquidity traders becomes so severe that only a few of them
choose to submit aggressive limit orders. This reduces the expected profits to in-
formed traders, and can lead to a decline in the number of speculators that acquire
information. Figure 2 shows, for a parametric example, howc �t andn�t evolve.
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FIGURE 2

ct * and nt * as Functions of �t when m � 1 and e � 0�1

Figure 2A. ct * as Function of �t
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If I interpret the aggressive limit orders as market orders, Proposition 1
shows that the proportion of limit orders by liquidity traders is increasing in the
probability of private information,	 t. Below I show that market volatility is also
increasing in	t� implying that, in this model, the amount of limit orders by liq-
uidity traders is higher in more volatile markets.

The equilibrium amount of limit orders by liquidity traders and the number
of informed traders depend upon a single variable,	 t, which was defined as	t �
���zt �Æt � �t�. Remember also that	t �	+Rt�	�	�, whereRt is the probability
of stateA� given�t. This means that the evolution of the number of informed
traders and the trading strategies of the liquidity traders actually depend upon the
evolution ofRt. I now look at the evolution ofRt more closely. Denote by�Rt the
following conditional probability,�Rt� �� �st � A � �t+1� � and denote by�t the
periodt trading volume. Note that� t� m�1� c�t � when there is no private signal
on Æt, zt � 0� and it is something greater than this, due to informed trading, in
the event that there is,zt � Æt.7 An application of Bayes rule gives

�Rt �

�	
	�
	Rt

	t
if �t � m �1� c�t �

�1� 	�Rt

�1� 	t�
if �t � m �1� c�t � �

(4)

Now, given the transition probabilities� and� between statesA andB,

Rt+1 � �Rt�1� �� +
�

1� �Rt



� � �Rt�1� �� �� + ��(5)

These equations imply, for all observed values ofR t+1� thatRt+1� the probability of
stateA in periodt +1� given�t+1� is higher thanRt if there is evidence of informed
trading in periodt, and is lower thanRt otherwise. The result is due to the fact
that informed trading is more likely to occur in the event that the firm is engaged
in activity A as opposed to activityB�

Note that traders must use the volume of trade to correctly update their es-
timate of the state of the economy, which is the firm’s activity or, equivalently,
the probability of private information. The same information is not contained in
the returns because the returns can also be non-zero due to a public signal. The
trading volume helps separate private information arrivals from public informa-
tion arrivals and, given that there are autocorrelated changes in the probability of
private information over time, the trading volume contains useful information for
the different groups of traders beyond that contained in the returns of the risky
asset. Both speculators and liquidity traders need this information to follow their
optimal strategies.

The probability of private information,	 t� affects the expected trading vol-
ume in three different ways: first, it is the probability that there is informed trad-
ing, second, it affects the number of informed traders and, third, the proportion
of limit vs. market orders (conservative vs. aggressive limit orders) by liquidity
traders. Both the state of the economy and beliefs about it matter for trading vol-
ume. The combination of these different effects leads to interesting dynamics for
the trading volume.

7Recall thatm is the measure of liquidity traders with, for instance, a need to sell the asset in
periodt.
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Note that, for simplicity, the model assumes that not even the informed
traders observe the firm’s activity. If they did, more information about the state
of the economy could be revealed through their trading than above. The reason
is that the volume of trade in periodt would then, ifz t �� 0� provide information
on how many traders chose to search information in periodt, which, in this case,
would depend on the state of the economy in the previous period. Because the
previously informed traders would know the previous state of the world, other
things being equal, fewer of them would search for information if this state were
B rather thanA. My main results concerning the price variability and volume
dynamics do not seem sensitive to this assumption. The evolution equation for
conditional price variability, which I will derive shortly, would nevertheless look
different under this alternative assumption.

IV. Time-Series Properties

It turns out that for this model, it is much easier to characterize the behavior
of price variability when it is calculated using opening prices rather than closing
prices. The reason is that the daily signal for periodt, a t� becomes reflected only in
the opening price of the following morning. When price variability is calculated
from closing prices, the public signal introduces some negative autocorrelation in
price variability for the first lag: revelation of private information today reduces
the information revealed by the public signal tomorrow. This effect is not present
for the opening prices. The statistical properties of closing prices are identical to
those of the opening prices when the probability of a public signal is small. The
following two propositions characterize some of the main dynamic properties of
the model.

Proposition 2. The asset prices follow a martingale with respect to� t, i.e.,

E�Pt+1 � �t� � Pt�

Proposition 3. Let 0� s � T � t. The following results hold,

cov
�
�Pt+1 � Pt�

2� �t � �t
�

� 0�

cov
�
�Pt+1 � Pt�

2� �t
�

� 0�

cov
�
�Pt+s+1 � Pt+s�

2� �Pt+1 � Pt�
2
�

��
���1� ��2�	� 	�2

�� + ��2

�
�1� �� ��s � 0�

The proofs of these and all the remaining propositions are given in the Ap-
pendix. The asset price follows a martingale with respect to� t and the price
variability and trading volume are positively correlated both unconditionally and
conditional on�t. In addition, the autocorrelation function for price variability
is positive and geometrically decaying, very much like the autocorrelation func-
tions for price variability of stocks and stock indices documented in the empirical
research (see, e.g., Brock et al. (1996)).
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The positive correlation between volume and price variability, conditional
on the current information set, arises from the fact that the informed traders trade
only when they receive (non-zero) private information, and that their trading car-
ries information and affects prices. This effect is so strong that there is a positive
correlation between volume and price variability, even when I am not condition-
ing on the public information set.

The evolution of price variability depends on the evolution of the availability
of private information. When the firm is engaged in activityA, which is relatively
easy to monitor, the speculators receive private information with a higher proba-
bility and, since the private information is revealed through their trading, prices
are more volatile than when the firm is engaged in activityB. If the availability
of private information changes according to a two-state Markov process, as I as-
sume, the autocorrelation function for price variability is geometrically decaying.
This occurs because the longer the time period between two return observations,
the larger the probability that the firm has changed its activity during that time
and that the availability of private information has thereby changed.

Interestingly, autocorrelation for volume is indeterminate in this model. If
the number of speculators was constant and the liquidity traders did not change
their strategies over time, the trading volume would be positively autocorrelated,
similarly to the price variability. The endogenous behavior of liquidity traders
introduces, however, negative autocorrelation in trading volume: liquidity traders
react to a large trading volume by reducing the proportion of market orders. All
else being equal, this reduces the expected trading volume in the next period.
The behavior of speculators, on the other hand, can introduce either positive or
negative autocorrelation in trading volume, depending on whether we are in the
range of	t where the number of informed speculators is increasing or decreasing
in 	t (see Figure 2)� Whether the autocorrelation in trading volume is positive or
negative depends upon which of these three effects dominates.

It is equally interesting to characterize the dynamics of expected variance
of price changes and trading volume. Propositions 4 and 5 show that the condi-
tional variance in this model is positively autocorrelated and mean reverting, as
is directly assumed in the GARCH literature. Before proceeding, I introduce the
following notation. Denote by�2

t the conditional variance,�2
t �var�Pt+1�Pt � �t��

and letEt�
� denote the expectation operator conditioned on the public informa-
tion set�t. I can now state the following.

Proposition 4. cov��2
t+s� �

2
t � � 0�

Proposition 5. �2
t is mean reverting. In particular,Et��

2
t+1� � �2

t when�2
t � �2

andEt��
2
t+1� � �2

t when�2
t � �2, where

�2 � � + �1� ��

�
	 +

��	� 	�

�� + ��

�
�

The Appendix shows that�2
t � � + �1� ��	t� This result is very intuitive:

� is the probability thatÆt is announced through a public announcement, and	 t

the independent probability with which the informed traders observeÆ t, given�t.
Given that the trading by the informed traders is fully revealing, the value ofÆ t

is revealed with probability� + �1� ��	 t� As the absolute value of the periodic
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innovations is always equal to one, this is also the expected variance of the price
changes. Since	t�	+Rt�	�	�� �2

t can also be written as�+�1����	+Rt�	�	��.
The above two results, positive autocorrelation and mean reversion in conditional
variance, follow from similar properties inRt.

I am interested in characterizing more explicitly the evolution of the condi-
tional variance. Given that the conditional variance is a function ofR t, and the
updating rule forRt depends on the current period’s trading volume by equation
(4), trading volume enters the evolution equation for conditional variance. Indeed,
when 0� � � 1, price changes are not sufficient statistics for predicting changes
in the conditional variance, but information on the volume of informed trading is
needed. If this is not observable (to econometricians), one might use information
on both total trading volume and price innovations to estimate it. For this model,
I can characterize explicitly the transition equation for the conditional variance,
and show its dependence on trading volume. To do this, some additional notation
is needed: let�2 � � + �1� ��	.

Solving for the conditional variance process gives

�2
t � � + ���2

t�1� + ���2
t�1�

�
�t�1 � m�1� c�t�1�

x�t�1

�
�(6)

where x�t�1 � �	


�
mc�t�1�

m
�
1� c�t�1

�
nt�1

m
�
1� c�t�1

�
+ nt�1

�
�

� � � + �1� �� �	 + � �	� 	�� �

� �
�1� �� ���1� ���1� 	�

�
�2

t�1 � �2
�

�1� �2
t�1�

� and

� � �1� �� ���1� ��
�
�2

t�1 � �2
� � 	

�2
t�1 � �

� �1� 	�

1� �2
t�1

�
�

I can show that if the trading volume in periodt � 1 is low, i.e.,� t�1 �
m�1 � c�t�1�� then�2

t � �2
t�1� and if the trading volume is high, i.e.,� t�1 �

m�1 � c�t�1�� then�2
t � �2

t�1. Thus, the conditional variance always increases
if there is evidence of informed trading, and decreases otherwise. Note that in
the special case where�� the probability of public information arrival, is zero, the
above equation can be written as

�2
t � � + ���2

t�1� + ���2
t�1� �Pt � Pt�1�

2
�

which is close to the evolution equation for variance typically assumed in the
GARCH literature.8 In this model, when 1� � � 0� the volume of trade allows
an econometrician to separate private information arrivals from public informa-
tion arrivals and, given that there is autocorrelation in the private information
arrival, to better estimate the conditional variance as compared to what would be

8In the GARCH literature, the conditional variance is typically assumed to evolve according to

�2
t � � + ��2

t�1 + � �Pt � Pt�1�
2 �
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possible using data on prices alone. This result should continue to hold even in
more general settings where there are changes also in the arrival rate of public
information over time.

The final time-series result concerns the relationship between expected price
variability and the expected trading volume,� e

t � E��t � �t�.

Proposition 6. The conditional variance,� 2
t � and the conditional expected trading

volume,�e
t � can be either positively or negatively correlated random variables.

The result follows from the fact that� e
t can be either an increasing or de-

creasing function of	t� depending on the possible range of values for	 t� as well
as the other parameters of the model. The result that the expected trading volume
can decrease in the probability of private information is somewhat surprising. It
does occur, however, because of the endogenous trading strategies of the liquidity
traders. In fact, in the limiting case thate � 0, trading volume ism both when
	t � 0� all liquidity traders trade aggressively and there are no informed traders,
and when	t � 1� all liquidity traders trade conservatively, but information is
always perfectly revealed. For intermediate values of	 t, the expected trading
volume can be either higher or lower thanm. Figure 3 shows the expected trad-
ing volume for a parametric example. So it is possible that volatile markets, with
much private information, are characterized by either high or low trading volume.
In both cases, however, the proportion of limit orders by uninformed traders,c�t ,
is high.9

V. Conclusion

This paper studies an asset market where the availability of private infor-
mation is stochastically changing over time due to changes in the source of un-
certainty in the asset returns. In equilibrium, liquidity traders and speculators use
past periods’ trading volume to estimate the availability of private information. As
the public estimate on the availability of private information increases, liquidity
traders become wary and start posting more conservative limit orders. Initially,
the number of informed traders increases but, in response to more conservative
trading by liquidity traders, it may subsequently decrease.

My model is consistent with several empirically observed patterns. Because
the trading by informed traders reveals private information, there is a positive
correlation between price variability and trading volume. The price variability
depends on the availability of private information and inherits any autocorrelation
in the process that determines it. When the availability of private information

9One empirical observation that I did not address, the so-called leverage effect, is an observation
that prices become more volatile after negative returns than after positive ones. In fact, the current
model could be adjusted to account for this phenomenon as well if I were to assume that the two
projects have different mean returns: for instance, assume that���Æt � 1 � A� � 1/2. However, with
this assumption, the model becomes quite complicated. This empirical observation can be related
to changes in the level of volatility of the underlying returns (not only the availability of private
information). It may well be that high volatility periods, associated with economic or financial distress,
do have lower mean returns on firms’ investments. Alternatively, it may also be that the expected return
on the risky asset depends on volatility, and this explains why high future volatility is associated with
negative stock returns.
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FIGURE 3

The Expected Trading Volume as a Function of �t when m � 1 and e � 0�1
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changes according to a two-state Markov process, as I assumed, the autocorre-
lation function for variance is positive and geometrically decaying. This is very
much like the autocorrelation functions of individual stocks and stock indices
estimated by the empirical research. I showed that the conditional variance is au-
tocorrelated and mean reverting and that it may be either positively or negatively
correlated with the expected trading volume. Finally, I showed that price changes
are not sufficient statistics to characterize the evolution of conditional variance,
but that information on trading volume is also needed.

The model has several empirical implications that could be tested in future
research. For instance, the model provides a closed form solution for the condi-
tional variance process. Second, it predicts that the conditional variance is posi-
tively correlated with measures of information asymmetry in the market, such as
the bid-ask spread or, as predicted by this model, the proportion of limit orders by
uninformed traders.

Appendix

Proof of Proposition 1. Given the behavior of the other informed traders and the
liquidity traders, the incentives of an informed trader to follow the above strategy
profile are satisfied: setting a bid and an ask atE�FT � �t� zt� � h �Ft + zt � h�
whereh is the transaction cost, maximizes his expected trading profits. Ifz t�1� for
instance, to maximize 1, an informed trader must set his ask at or aboveF t + zt + h
to avoid making losses. On the other hand, he profits from buying the asset at
any transaction price strictly belowFt + zt � h. Given my market clearing rule
and the strategies of the other traders, he will make a trading profit if and only if
he succeeds to trade atPo

t � Ft. Therefore, his expected profits are the same for
any bid at or aboveFt includingFt + zt � h. The situation is similar ifzt � �1�
If zt � 0, the informed trader does not expect to trade but is willing to sell if the
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price is aboveFt + h and buy if the price is belowFt � h� As he expects the price
to remain atFt, setting a bid and an ask at these prices is optimal.10

Whether the high ask price of a liquidity trader with selling need isF t + 1+ h
or Ft + 1� h depends on whethermc�t � �m�1� c�t �n

�

t ���m�1� c�t � + n�t �. This
inequality determines whether the number of liquidity traders selling atF t + 1�
i.e., mc�t � is greater than the number of liquidity traders buying atF t + 1 when
zt � 1� The latter is the number of liquidity traders who cannot complete their
orders at the opening priceFt� whenzt �1� Whichever group is larger depends on
the values ofe and	t� Let us here consider the case where the former group, i.e.,
mc�t , is larger. In this case, the conservatively trading liquidity traders set their
ask prices atFt + 1� h and bid prices atFt �1 +h� The second case is similar and
therefore omitted.

Given the behavior of the other traders, a liquidity trader with a need to
sell may do one of two things: first, he may set the limit price of his sell order
at Ft + 1� h and sell only when informed traders observez t � 1, either to the
informed traders or to liquidity traders with buying needs who fail to buy at a
lower price (note that, ifn�t � mc�t � as I will later show, he is guaranteed a sale at
this price, so setting a lower limit price does not make sense). Or, second, he may
set his limit price lower thanFt in order to have the possibility of trading even
in the event thatzt � 0� Given that the number of liquidity traders with selling
needs setting their asks belowFt is the same as the number of liquidity traders
with buying needs setting their bids aboveFt, the former group may actually set
their asks atFt�1 � 1 + h� because the only instant that they may fail to trade in
equilibrium at the opening priceFt is when there are informed traders who have
observedzt ��1� In this case, they are better off trying to trade with traders who
have set their bids atFt�1 � 1 + h. The logic is similar for liquidity traders with
large buying needs. Because of this, the liquidity traders, in equilibrium, use only
two of all possible limit prices:Ft + 1� h andFt�1 � 1 + h� Note that, given
the behavior of the informed traders, the closing price of the period is always
Ft + zt�1� h�.

Let �H
a �c� be the sum of a liquidity trader’s utility from satisfying his liq-

uidity need when he obtains a utilityc from selling the asset in periodt and his
expected periodt trading profit from setting ahigh ask priceF t + 1� h. Define
�L

a � �
H
b , and�L

b accordingly. Given thatPcl
t � E�FT � �t� zt�� the periodt trad-

ing profit to traderi� evaluated before the periodt public announcement, can be
written asxi�Pcl

t �Pi�� Here,xi � �1��1� is the quantity traded andPi is i’s trans-
action price. Equilibrium prevails when a measuremc�t of liquidity traders with
selling (buying) needs set their asks (bids) atFt + 1�h �Ft�1 +h� and a measure
m�1� c�t � of liquidity traders with selling (buying) needs set their asks (bids) at
Ft�1+h �Ft +1�h�, and both�H

a �c
�

t ���L
a �c

�

t � and�L
b �c

�

t ���H
b �c

�

t �. Straightfor-

10For a Nash equilibrium, it is sufficient that the informed traders weakly prefer their equilibrium
strategies. To rule out “unlikely” equilibria in games where players in equilibrium are indifferent
between various actions, game theorists have introduced equilibrium refinements that essentially re-
quire the strategies to be optimal even if there are small possibilities of independent “mistakes” by
other players (in the jargon of game theory such equilibrium is called “trembling hand perfect equilib-
rium”). I can show that my equilibrium strategy for an informed trader is the only strategy that would
survive such equilibrium refinement.
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ward calculations give�H
a �c

�

t ���L
b �c

�

t ���	t�2��c�t �2h� and�L
a �c

�

t ���H
b �c

�

t ��
�c�t � h�� �	t�2��n�t ��m�1� c�t � + n�t ���1� h�. Setting�H

a �c
�

t � � �L
a �c

�

t � gives�
1� 	t

2



c�t �

	t

2

�
n�t

m�1� c�t � + n�t

�
�1� h�� �1� 	t�h � 0�(7)

An uninformed speculator’s problem is identical to that of a liquidity trader
whoseci �0� If he submitted orders, they would therefore be conservative and his
expected profits would equal zero. Therefore, an uninformed speculator is willing
to stay out of the market.

An overall equilibrium exists whenc�t satisfies equation (7) andn�t is such
that equation (3), which requires that the expected profits to informed traders are
equal to their cost of information acquisition, holds, i.e.,

	t

�
m�1� c�t �

m�1� c�t � + n�t

�
�1� h� � e�(8)

Recall that I have ruled out the possibility thatn�t � 0 by assuming thate is small
enough so that some speculators always choose to become informed. A sufficient
assumption for this is thate � 	.

Ignoringh, equations (7) and (8) imply

n�t � m

�
2	t + 3	te� 2	2

t � 2e� e2

�2� 	t�e

�
and c�t �

	t � e
2� 	t

�

I can now verify thatc�t is increasing in	t� and thatn�t � mc�t � The second
derivative ofn�t with respect to	t is equal to�2m�2� e�2��e�2� a�3�, which
is negative for all possible values for	 t. The first derivative ofn�t with respect to
	t is initially positive, but reaches zero at	t � 2��

2�1� e�2� � 0� Whene is
less than 2� 2�

�
2, this critical value for	t is less than one. In this case,n�t is

decreasing in	t for large values of	t.
I now derive the equation for the expected trading volume: whenz t � 0�

the trading volume ism�1� c�t � as the aggressive orders of liquidity traders are
executed at priceFt and there is no further trading� When zt �� 0� the trading
volume ism�1� c�t � at the opening priceFt, after which it is the maximum of
mc�t and�m�1� c�t �n

�

t ���m�1� c�t � + n�t � at priceFt + zt. Assume, for instance,
that zt � 1� mc�t is the number of liquidity traders with selling needs who have
set their limit price atFt + 1 ��h� and�m�1 � c�t �n

�

t ���m�1� c�t � + n�t � is the
number of liquidity traders with large buying needs, who could not complete their
orders at priceFt. If �m�1 � c�t �n

�

t ���m�1 � c�t � + n�t � � mc�, it is optimal
for the liquidity traders with small selling needs to set their asks atFt + 1 + h
as they can be assured of a sale even at this price, in the event thatz t � 1. If
mc�t � �m�1 � c�t �nt���m�1 � c�t � + nt�, on the other hand, competition leads
them to set their ask prices atFt + 1� h in order to guarantee a trade. In both
cases, the speculators are willing to be counterparts to the excess demand (or
supply) from these traders, of size�mc�t � �m�1 � c�t �nt���m�1� c�t � + nt��, at
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this price. The total trading volume is thenm�1� c�t � + x�t whenzt �� 0, where
x�t ��	
�mc�t � �m�1� c�t �n

�

t ���m�1� c�t �+ n�t �� and it ism�1� c�t � whenzt �0.
The expected trading volume, conditional on� t� is therefore,

�e
t � E ��t � �t�

� m�1� c�t � + 	tx
�

t �

Proof of Proposition 2.

E �Pt+1 � �t� � F +
t�1�
��0

�Æ� + E �E �Æt � �t+1� � �t�

� F +
t�1�
��0

�Æ� +
� + �1� ��	t

2
� � + �1� ��	t

2

� F +
t�1�
��0

�Æ� � Pt�

Proof of Proposition 3.

Statement 1:

cov
�
�Pt+1 � Pt�

2� �t � �t
�

� E
�
�Pt+1 � Pt�

2�t � �t
�� E

�
�Pt+1 � Pt�

2 � �t
�

E ��t � �t�

� 	t �m �1� c�t � + x�t � + �1� 	t��m �1� c�t �

� �� + �1� ��	t� �m �1� c�t � + 	tx
�

t �

� 	tx
�

t �1� 	t� �1� �� � 0�

Statement 2:

cov
�
�Pt+1 � Pt�

2� �t

�
� E

�
�Pt+1 � Pt�

2�t

�
� E�Pt+1 � Pt�

2E�t

� E
�
E
�
�Pt+1 � Pt�

2�t � �t

��
� E

�
E
�
�Pt+1 � Pt�

2 � �t

��
E �E ��t � �t��

� E ��t �m �1� c�t � + x�t � + �1� �t��m �1� c�t ��

� E ��� + �1� ���t��E �m �1� c�t � + �tx
�

t �

� �1� �� �E ��tx
�

t � �1� E�t� + mE�tEc�t � mE ��tc
�

t ��

� �1� �� �mE ��tc
�

t � �1� E�t� + mE�tEc�t � mE ��tc
�

t ��

� �1� ��E�tm �Ec�t � E ��tc
�

t �� � 0�

Statement 3: Introducing a random variableS t such thatSt � 1 whenst � A and
St � 0 whenst � B, and using the law of iterated expectations,

E �St+1 � St� � St�1� �� �� + �

E �St+2 � St� � E �E �St+2 � St+1� � St� � E ��St+1�1� �� �� + �� � St�

� St�1� �� ��2 + ��1� �� �� + ��
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and, more generally, that

E �St+s � St� � St�1� �� ��s +
s�1�
i�0

��1� �� ��i

� St�1� �� ��s +
�� ��1� �� ��s

� + �
�

Using this result and the fact thatESt � ES2
t � ���� + ��� for all t,

cov
�
�Pt+s+1 � Pt+s�

2� �Pt+1 � Pt�
2
�

� ��
��Æt+s �� 0 and �Æt �� 0

�
� ��

��Æt+s �� 0
�
��

��Æt �� 0
�

� E �E ��� + �1� �� �� + St+s��� ���� �� + �1� �� �� + St��� ���� � St��

� ��� + �1� ��E �� + St��� �����2

� E

�
� + �1� ��

�
� +

�
St�1� 	� 
�s +

	� 	�1� 	� 
�s

	 + 


�
��� ��

��
� �� + �1� �� �� + St��� �����

��
� + �1� ��

�
� +

	

	 + 

��� ��

���2

� �1� ��2��� ��2
�

E

�
S2

t �1� 	� 
�s + St
	� 	�1� 	� 
�s

	 + 


�
�

�
	

	 + 


�2
	

�
	
�1� ��2��� ��2

�	 + 
�2
�1� 	� 
�s�

Derivation of the conditional variance. First, note thatPt+1 � Pt � �Æt � E�Æt �
�t+1�. The martingale property of prices, formally shown above, implies that
E �Pt+1 � Pt � �t� � 0� Given this, and the fact that�Æt is either zero, one, or minus
one, I obtain that var�Pt+1 � Pt � �t� � E��Æ2

t � �t�. Straightforward calculations
give

�2
t � var�Pt+1 � Pt � �t� � � + �1� ��	t�

Proof of Proposition 4. According to Bayes ruleRt, the probability of stateA given
�t, evolves according to equations (4) and (5). Now, first note thatE t��Rt� � Rt�
and that

Et �Rt+1� � E �Rt+1 � Rt� � E��Rt��1� �� �� + �

� Rt�1� �� �� + ��

Similarly, as in the proof of Proposition 3, I can use the law of iterated expecta-
tions to obtain

E�Rt+s � Rt� � Rt�1� �� ��s +
s�1�
i�o

��1� �� ��i

� Rt�1� �� ��s +
�� ��1� �� ��s

� + �
�
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Using the law of iterated expectations and Jensen’s inequality,

cov
�
�2

t+s� �
2
t

�
� E

�
��2

t+s � E�2
t+s���

2
t � E�2

t �
�

� �1� ��2ERt E ��	t+s � E	t+s� �	t � E	t� � Rt�

� �1� ��2ERt E

��
	t+s �

�
�

� + �
�	� 	� + 	

��


�
	t �

�
�

� + �
�	� 	� + 	

��
� Rt

�
� �1� ��2�	� 	�2


 ERtE

��
Rt+s � �

� + �

��
Rt � �

� + �

�����Rt

�
� �1� ��2�	� 	�2


 ERt

��
Rt�1� �� ��s � ��1� �� ��s

� + �

��
Rt � �

� + �

��
� �1� ��2�	� 	�2

�
E�Rt��1� �� ��s � ��1� �� ��s

� + �

�


�

E�Rt�� �

� + �

�
� 0�

Proofs of Propositions 5 and 6. The mean reversion follows directly from the
definition of�2

t and the properties ofRt� stated above. To prove Proposition 6,
I must show that both positive and negative correlations are possible. I will use
the fact that two increasing functions of the same random variable are positively
correlated; and the fact that one decreasing and one increasing function of the
same random variable are negatively correlated. To prove the first claim (the
proof of the second is similar), let��x� and��x� be strictly increasing functions�
Consider two i.i.d. random variablesx andy. Then

E���x�� ��y�����x� � ��y�� � 0


 E���x���x�� � E��x�E��y�� E��y�E��x� + E��y�E��y�

� 2E���x���x��� 2E��x�E��x� � 2 cov��� �� � 0�

Now consider the parametric example in Figure 3. If	 � 0�7� both the expected
price variability and trading volume are increasing functions of	 t and thus pos-
itively correlated. On the contrary, if	 � 0�4 and	 � 0�6� the expected trading
volume is decreasing in	t� and the two variables are negatively correlated.
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